Limited Phenotypic Effects of Selectively Augmenting the SMN Protein in the Neurons of a Mouse Model of Severe Spinal Muscular Atrophy
نویسندگان
چکیده
The selective vulnerability of motor neurons to paucity of Survival Motor Neuron (SMN) protein is a defining feature of human spinal muscular atrophy (SMA) and indicative of a unique requirement for adequate levels of the protein in these cells. However, the relative contribution of SMN-depleted motor neurons to the disease process is uncertain and it is possible that their characteristic loss and the overall SMA phenotype is a consequence of low protein in multiple cell types including neighboring spinal neurons and non-neuronal tissue. To explore the tissue-specific requirements for SMN and, especially, the salutary effects of restoring normal levels of the protein to neuronal tissue of affected individuals, we have selectively expressed the protein in neurons of mice that model severe SMA. Expressing SMN pan-neuronally in mutant mice mitigated specific aspects of the disease phenotype. Motor performance of the mice improved and the loss of spinal motor neurons that characterizes the disease was arrested. Proprioceptive synapses on the motor neurons were restored and defects of the neuromuscular junctions mitigated. The improvements at the cellular level were reflected in a four-fold increase in survival. Nevertheless, mutants expressing neuronal SMN did not live beyond three weeks of birth, a relatively poor outcome compared to the effects of ubiquitously restoring SMN. This suggests that although neurons and, in particular, spinal motor neurons constitute critical cellular sites of action of the SMN protein, a truly effective treatment of severe SMA will require restoring the protein to multiple cell types including non-neuronal tissue.
منابع مشابه
Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway.
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease that is characterized by the loss of motor neurons, resulting in progressive muscle atrophy. It is caused by the loss of functional survival motor neuron (SMN) protein due to mutations or deletion in the SMN1 gene. A potential treatment strategy for SMA is to upregulate levels of SMN protein. Several agents that a...
متن کاملDevelopment and characterization of an SMN2-based intermediate mouse model of Spinal Muscular Atrophy.
Spinal Muscular Atrophy (SMA) is due to the loss of the survival motor neuron gene 1 (SMN1), resulting in motor neuron (MN) degeneration, muscle atrophy and loss of motor function. While SMN2 encodes a protein identical to SMN1, a single nucleotide difference in exon 7 causes most of the SMN2-derived transcripts to be alternatively spliced resulting in a truncated and unstable protein (SMNΔ7). ...
متن کاملSpinal Muscular Atrophy: A Short Review Article
Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...
متن کاملThe contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy
Spinal muscular atrophy (SMA), which is caused by inactivating mutations in the survival motor neuron 1 (SMN1) gene, is characterized by loss of lower motor neurons in the spinal cord. The gene encoding SMN is very highly conserved in evolution, allowing the disease to be modeled in a range of species. The similarities in anatomy and physiology to the human neuromuscular system, coupled with th...
متن کاملDrawing Word co-occurrence map of Spinal Muscular Atrophy disease
Introduction: The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...
متن کامل